浙江省2024高考英語二輪復(fù)習(xí) 專題訓(xùn)練 閱讀理解(24)
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握勾股定理;
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明;
(3)了解有關(guān)勾股定理的歷史.
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
教學(xué)重點(diǎn):勾股定理及其應(yīng)用
教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育
教學(xué)用具:直尺 教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識(shí)復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問題: 直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
欣賞圖片,激發(fā)興趣數(shù)一數(shù)、算一算
(1)你能發(fā)現(xiàn)圖中三個(gè)正方形A,B,C的面積之間有什么關(guān)系嗎? (2)你能用三角形的邊長表示正方形的面積嗎? (3)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?與同伴進(jìn)行交流。
勾股定理:直角三角形兩直角邊a、b 的平方和等于斜邊c 的平方
如果直角三角形兩直角邊分別為a、b,斜邊為c,那么??????強(qiáng)調(diào)說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
學(xué)習(xí)完一個(gè)重要知識(shí)點(diǎn),給學(xué)生留有一定的時(shí)間和機(jī)會(huì),提出問題,然后大家共同分析討論.
3、定理的證明方法
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形.
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形,
方法三:“總統(tǒng)”法.如圖所示將兩個(gè)直角三角形拼成直角梯形
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo).最后總結(jié)說明
4、定理的應(yīng)用
(1)如下圖,在ABC中,C=90°,a、b、c分別為A、B、C的對(duì)邊,若a=6,c=10,則b等于多少?若a=12,b=5,則c等于多少?若c=15,b=13,則a等于多少?
(2)RtABC的兩邊長分別是3和4,則第三邊長的平方為多少?
(3)已知等邊三角形ABC的邊長是6cm.求:(1)高AD的長;(2)ABC的面積。
(4) 已知:如圖,在ABC中,ACB= ,AB=5cm,AC=3cm,CDAB于D,求CD的長.
5、教學(xué)反思
我對(duì)本節(jié)課的教學(xué)過程是這樣設(shè)計(jì)的:
1、欣賞圖片,激發(fā)興趣
通過欣賞2002年在我國北京召開的國際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引出“趙爽弦圖”,讓學(xué)生了解我國古代輝煌的數(shù)學(xué)成就,引入課題。
接下來,讓學(xué)生欣賞傳說故事:相傳2500年前,畢達(dá)格拉斯在朋友家做客時(shí),發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。
這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對(duì)學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。
2、分析探究,得出猜想
通過對(duì)地板圖形中的等腰直角三角形到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗(yàn)由特殊到一般的探究過程,學(xué)習(xí)這種研究方法。
在這一過程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)交流,然后在全班交流,盡量學(xué)習(xí)更多的方法。
3、拼圖證明,得出定理先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己剪拼,并利用圖形進(jìn)行證明。由于難度比較大,組織學(xué)生開展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。4、反思?xì)w納,總結(jié)升華一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(當(dāng)然多數(shù)為具體的知識(shí)和方法)。二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時(shí)對(duì)大家進(jìn)行思想教育。5、練習(xí)鞏固主要練習(xí)勾股定理的其它證明方法。6、作業(yè)設(shè)計(jì)(1)新課改理念只有全面滲透到教育教學(xué)工作中,與平時(shí)工作緊密結(jié)合,才能夠促進(jìn)學(xué)生的全面發(fā)展;(2)教師要充分利用課堂內(nèi)容為整體課程目標(biāo)服務(wù),不要僅限于本節(jié)課的知識(shí)目標(biāo)與要求,就知識(shí)“教”知識(shí),而要通過知識(shí)的學(xué)習(xí)獲得學(xué)習(xí)這些知識(shí)的方法,同時(shí),還要充分利用課堂對(duì)學(xué)生進(jìn)行情感態(tài)度價(jià)值觀的教育,真正讓教材成為教育學(xué)生的素材,而不是學(xué)科教學(xué)的全部;(3)要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會(huì)我相信:只要堅(jiān)持不懈地這樣去做,不但能很好地實(shí)施新課改,實(shí)現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握勾股定理;
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明;
(3)了解有關(guān)勾股定理的歷史.
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育.
教學(xué)重點(diǎn):勾股定理及其應(yīng)用
教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育
教學(xué)用具:直尺 教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識(shí)復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問題: 直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
欣賞圖片,激發(fā)興趣數(shù)一數(shù)、算一算
(1)你能發(fā)現(xiàn)圖中三個(gè)正方形A,B,C的面積之間有什么關(guān)系嗎? (2)你能用三角形的邊長表示正方形的面積嗎? (3)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?與同伴進(jìn)行交流。
勾股定理:直角三角形兩直角邊a、b 的平方和等于斜邊c 的平方
如果直角三角形兩直角邊分別為a、b,斜邊為c,那么??????強(qiáng)調(diào)說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
學(xué)習(xí)完一個(gè)重要知識(shí)點(diǎn),給學(xué)生留有一定的時(shí)間和機(jī)會(huì),提出問題,然后大家共同分析討論.
3、定理的證明方法
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形.
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形,
方法三:“總統(tǒng)”法.如圖所示將兩個(gè)直角三角形拼成直角梯形
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo).最后總結(jié)說明
4、定理的應(yīng)用
(1)如下圖,在ABC中,C=90°,a、b、c分別為A、B、C的對(duì)邊,若a=6,c=10,則b等于多少?若a=12,b=5,則c等于多少?若c=15,b=13,則a等于多少?
(2)RtABC的兩邊長分別是3和4,則第三邊長的平方為多少?
(3)已知等邊三角形ABC的邊長是6cm.求:(1)高AD的長;(2)ABC的面積。
(4) 已知:如圖,在ABC中,ACB= ,AB=5cm,AC=3cm,CDAB于D,求CD的長.
5、教學(xué)反思
我對(duì)本節(jié)課的教學(xué)過程是這樣設(shè)計(jì)的:
1、欣賞圖片,激發(fā)興趣
通過欣賞2002年在我國北京召開的國際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引出“趙爽弦圖”,讓學(xué)生了解我國古代輝煌的數(shù)學(xué)成就,引入課題。
接下來,讓學(xué)生欣賞傳說故事:相傳2500年前,畢達(dá)格拉斯在朋友家做客時(shí),發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。
這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對(duì)學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。
2、分析探究,得出猜想
通過對(duì)地板圖形中的等腰直角三角形到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗(yàn)由特殊到一般的探究過程,學(xué)習(xí)這種研究方法。
在這一過程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)交流,然后在全班交流,盡量學(xué)習(xí)更多的方法。
3、拼圖證明,得出定理先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己剪拼,并利用圖形進(jìn)行證明。由于難度比較大,組織學(xué)生開展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。4、反思?xì)w納,總結(jié)升華一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(當(dāng)然多數(shù)為具體的知識(shí)和方法)。二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時(shí)對(duì)大家進(jìn)行思想教育。5、練習(xí)鞏固主要練習(xí)勾股定理的其它證明方法。6、作業(yè)設(shè)計(jì)(1)新課改理念只有全面滲透到教育教學(xué)工作中,與平時(shí)工作緊密結(jié)合,才能夠促進(jìn)學(xué)生的全面發(fā)展;(2)教師要充分利用課堂內(nèi)容為整體課程目標(biāo)服務(wù),不要僅限于本節(jié)課的知識(shí)目標(biāo)與要求,就知識(shí)“教”知識(shí),而要通過知識(shí)的學(xué)習(xí)獲得學(xué)習(xí)這些知識(shí)的方法,同時(shí),還要充分利用課堂對(duì)學(xué)生進(jìn)行情感態(tài)度價(jià)值觀的教育,真正讓教材成為教育學(xué)生的素材,而不是學(xué)科教學(xué)的全部;(3)要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會(huì)我相信:只要堅(jiān)持不懈地這樣去做,不但能很好地實(shí)施新課改,實(shí)現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績