雅思聽力真題及解析

雕龍文庫 分享 時間: 收藏本文

雅思聽力真題及解析

  Rogue theory of smell gets a boost   1. A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists.   2. Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved.   3. Thats still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously.   4. This is a big step forward, says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, it has been ignored rather than criticized.   5. Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   6. But Turin argued that smell doesnt seem to fit this picture very well. Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different to animals, if not necessarily to humans simply because they contain different isotopes (atoms that are chemically identical but have a different mass)。   7. Turins explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecules shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain.   8. This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turins mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock.   9. Vibration-assisted electron tunnelling can undoubtedly occur it is used in an experimental technique for measuring molecular vibrations. The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield.   10. Stoneham says that when he first heard about Turins idea, while Turin was himself based at UCL, I didnt believe it。 But, he adds, because it was an interesting idea, I thought I should prove it couldnt work. I did some simple calculations, and only then began to feel Luca could be right. Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters.   11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort.   12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is which means that odour identification in this way seems theoretically possible.   13. But Horsfield stresses that thats different from a proof of Turins idea. So far things look plausible, but we need proper experimental verification. Were beginning to think about what experiments could be performed.   14. Meanwhile, Turin is pressing ahead with his hypothesis. At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations, he says. Our success rate at odorant discovery is two orders of magnitude better than the competition. At the very least, he is putting his money where his nose is.   (668 words Nature)   Questions 1-4   Do the following statements agree with the information given in the passage? Please write   TRUE if the statement agrees with the writer   FALSE if the statement does not agree with the writer   NOT GIVEN if there is no information about this in the passage   1. The result of the study at UCL agrees with Turins theory.   2. The study at UCL could conclusively prove what Luca Turin has hypothesized.   3. Turin left his post at UCL and started his own business because his theory was ignored.   4. The molecules of alcohols and those of thiols look alike.   Questions 5-9   Complete the sentences below with words from the passage. Use NO MORE THAN THREE WORDS for each answer.   5. The hypothesis that we smell by sensing the molecular vibration was made by ______.

  6. Turins company is based in ______.   7. Most scientists believed that our nose works in the same way as our ______.   8. Different isotopes can smell different when ______ weigh differently.   9. According to Audrew Horsfield, it is still to be proved that ______ could really occur in human nose.   Question 10-12   Answer the questions below using NO MORE THAN THREE WORDS from the passage for each answer.   10. Whats the name of the researcher who collaborated with Stoneham?   11. What is the next step of the UCL teams study?   12. What is the theoretical basis in designing odorants in Turins company?   Answer Keys and Explanations   1. T 見第一段。give sth the thumbs up為接受的意思。   2. F 見第三段。 Thats still some way from proving that the theory, proposed in the mid- 1990s by biophysicist Luca Turin, is correct.意即現在尚無法證實生物物理學家Luca在九十年代中期提出的理論是否正確。   3. NG   4. T 見第六段 Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs.identical 一詞是完全相同的意思。這句話是說alcohols和thiols的分子結構看起來一樣,但是它們的味道卻相去甚遠。   5. Luca Turin 文章第二,三和七段均可看出Luca的理論即人類的鼻子是通過感覺氣味分子的震動來分辨氣味的。   6. Virginia 見第四段。   7. tongue 見第五段 This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   8. the atoms 見第八段 This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier.   9. vibration-assisted electron tunneling 見第九段 The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield. 句中的代詞this指句首的vibration-assisted electron tunneling。   10. Andrew Horsfield 見第九段結尾。   11.proper experimental verification 見第十三段。   12.their computed vibrations 見第十四段

  

  Rogue theory of smell gets a boost   1. A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists.   2. Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved.   3. Thats still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously.   4. This is a big step forward, says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, it has been ignored rather than criticized.   5. Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   6. But Turin argued that smell doesnt seem to fit this picture very well. Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different to animals, if not necessarily to humans simply because they contain different isotopes (atoms that are chemically identical but have a different mass)。   7. Turins explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecules shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain.   8. This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turins mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock.   9. Vibration-assisted electron tunnelling can undoubtedly occur it is used in an experimental technique for measuring molecular vibrations. The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield.   10. Stoneham says that when he first heard about Turins idea, while Turin was himself based at UCL, I didnt believe it。 But, he adds, because it was an interesting idea, I thought I should prove it couldnt work. I did some simple calculations, and only then began to feel Luca could be right. Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters.   11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort.   12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is which means that odour identification in this way seems theoretically possible.   13. But Horsfield stresses that thats different from a proof of Turins idea. So far things look plausible, but we need proper experimental verification. Were beginning to think about what experiments could be performed.   14. Meanwhile, Turin is pressing ahead with his hypothesis. At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations, he says. Our success rate at odorant discovery is two orders of magnitude better than the competition. At the very least, he is putting his money where his nose is.   (668 words Nature)   Questions 1-4   Do the following statements agree with the information given in the passage? Please write   TRUE if the statement agrees with the writer   FALSE if the statement does not agree with the writer   NOT GIVEN if there is no information about this in the passage   1. The result of the study at UCL agrees with Turins theory.   2. The study at UCL could conclusively prove what Luca Turin has hypothesized.   3. Turin left his post at UCL and started his own business because his theory was ignored.   4. The molecules of alcohols and those of thiols look alike.   Questions 5-9   Complete the sentences below with words from the passage. Use NO MORE THAN THREE WORDS for each answer.   5. The hypothesis that we smell by sensing the molecular vibration was made by ______.

  6. Turins company is based in ______.   7. Most scientists believed that our nose works in the same way as our ______.   8. Different isotopes can smell different when ______ weigh differently.   9. According to Audrew Horsfield, it is still to be proved that ______ could really occur in human nose.   Question 10-12   Answer the questions below using NO MORE THAN THREE WORDS from the passage for each answer.   10. Whats the name of the researcher who collaborated with Stoneham?   11. What is the next step of the UCL teams study?   12. What is the theoretical basis in designing odorants in Turins company?   Answer Keys and Explanations   1. T 見第一段。give sth the thumbs up為接受的意思。   2. F 見第三段。 Thats still some way from proving that the theory, proposed in the mid- 1990s by biophysicist Luca Turin, is correct.意即現在尚無法證實生物物理學家Luca在九十年代中期提出的理論是否正確。   3. NG   4. T 見第六段 Molecules that look almost identical can smell very different such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs.identical 一詞是完全相同的意思。這句話是說alcohols和thiols的分子結構看起來一樣,但是它們的味道卻相去甚遠。   5. Luca Turin 文章第二,三和七段均可看出Luca的理論即人類的鼻子是通過感覺氣味分子的震動來分辨氣味的。   6. Virginia 見第四段。   7. tongue 見第五段 This molecular lock and key process is thought to lie behind a wide range of the bodys detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.   8. the atoms 見第八段 This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier.   9. vibration-assisted electron tunneling 見第九段 The question is whether this is possible in the nose, says Stonehams colleague, Andrew Horsfield. 句中的代詞this指句首的vibration-assisted electron tunneling。   10. Andrew Horsfield 見第九段結尾。   11.proper experimental verification 見第十三段。   12.their computed vibrations 見第十四段

  

主站蜘蛛池模板: 伊人色综合网一区二区三区 | 亚洲欧美另类国产| 中文字幕无线码一区| 高清性色生活片2| 欧美三级在线免费观看| 国产黄大片在线观看视频| 免费人成网站在线观看不卡| 中文字幕影片免费在线观看| 韩国欧洲一级毛片免费| 欧美人与动zooz| 国产精品久久久久久一区二区三区| 亚洲韩国在线一卡二卡| v电影v亚洲v欧美v国产| 色婷婷亚洲十月十月色天| 日韩精品视频观看| 国产日韩av免费无码一区二区| 亚洲精品免费在线| 99国产精品免费观看视频| 狠狠色婷婷久久一区二区三区 | 国产成人精品亚洲精品| 亚洲一区在线免费观看| 你懂的国产高清在线播放视频| 永久免费看mv网站入口| 天堂…在线最新版资源| 伊人久久大香线| 97精品一区二区视频在线观看| 波多野结衣中文字幕一区二区三区 | hkpic比思特区东方美人| 男女下面的一进一出视频| 天堂а√中文最新版在线| 亚洲精品午夜久久久伊人| 2021年国产精品久久| 极品美女一级毛片免费| 国产成人精品自线拍| 亚洲一级片免费看| .天堂网www在线资源| 榴莲视频在线观看污| 国产又黄又爽又刺激的免费网址 | 欧美大片在线观看完整版| 国产欧美日韩中文久久| 久久天天躁夜夜躁狠狠躁2020 |