初二數學教案
作為一名專為他人授業解惑的人民教師,就有可能用到教案,編寫教案助于積累教學經驗,不斷提高教學質量。那么我們該如何寫一篇較為完美的教案呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。
初二數學教案篇一
1.會解簡易方程,并能用簡易方程解簡單的應用題;
2.通過代數法解簡易方程進一步培養學生的運算能力,發展學生的應用意識;
3.通過解決問題的實踐,激發學生的學習興趣,培養學生的鉆研精神。
教學建議
一、教學重點、難點
重點:簡易方程的解法;
難點:根據實際問題中的數量關系正確地列出方程并求解。
二、重點、難點分析
解簡易方程的基本方法是:將方程兩邊同時加上(或減去)同一個適當的數;將方程兩邊同時乘以(或除以)同一個適當的數。最終求出問題的解。
判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個數是否“適當”,關鍵是看運算的第一步能否使方程的一邊只含有帶有未知數的那個數,第二步能否使方程的一邊只剩下未知數,即求出結果。
列簡易方程解應用題是以列代數式為基礎的,關鍵是在弄清楚題目語句中各種數量的意義及相互關系的基礎上,選取適當的未知數,然后把與數量有關的語句用代數式表示出來,最后利用題中的相等關系列出方程并求解。
三、知識結構
導入方程的概念解簡易方程利用簡易方程解應用題。
四、教法建議
(1)在本節的導入部分,須使學生理解的是算術運算只對已知數進行加、減、乘、除,而代數運算的優越性體現在未知數獲得與已知數平等的地位,即同樣可以和已知數進行加、減、乘、除運算。對于方程、方程的解、解方程的概念讓學生了解即可。
(2)解簡易方程,要在學生積極參與的基礎上,理解何種形式的方程在求解過程中方程兩邊選擇加上(或減去)同一個數,以及何種形式的方程在求解過程中兩邊選擇乘以(或除以)同一個數。另一個重要的問題就是“適當的數”的選擇了。通常,整式方程并不需要檢驗,但為了學生從一開始就養成自我檢查的好習慣,可以讓學生在草稿紙上檢驗,同時也是對前面學過的求代數式的值的復習。
(3)教材給出了三道應用題,其中例4是一道有關公式應用的方程問題。列簡易方程解應用題,關鍵在引導學生加深對代數式的理解基礎上,認真讀懂題意,弄清楚題目中的關鍵語句所包含的各種數量的意義及相互關系。恰當地設未知數,用代數式表示數學語句,依據相等關系正確的列出方程并求解。
(4)教學過程中,應充分發揮多媒體技術的輔助教學作用,可以參考運用相關課件提高學生的學習興趣,加深對列簡易方程解簡單的應用題的整個分析、解決問題過程的理解。此外,通過應用投影儀、幻燈片可以提高課堂效率,有利于對知識點的掌握。
五、列簡易方程解應用題
列簡易方程解應用題的一般步驟
(1)弄清題意和題目中的已知數、未知數,用字母(如x)表示題目中的一個未知數.
(2)找出能夠表示應用題全部含義的一個相等關系.
(3)根據這個相等關系列出需要的代數式,從而列出方程.
(4)解這個方程,求出未知數的值.
(5)寫出答案(包括單位名稱).
概括地說,列簡易方程解應用題,一般有“設、列、解、驗、答”五個步驟,審題可在草稿紙上進行.其中關鍵是“列”,即列出符合題意的方程.難點是找等量關系.要想抓住關鍵、突破難點,一定要開動腦筋,勤于思考、努力提高自己分析問題和解決問題的能力.
初二數學教案篇二
知識與技能目標
1.經歷平行四邊形判別條件的探索過程,發現平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
1.在探索平行四邊形的判別條件的過程中,發展學生的合情推理意識,主動探索的習慣。
2.鼓勵學生用多種方法進行說理。
1.培養學生探索創新的能力,開拓學生思路,發展學生的思維能力。
2.培養學生合作學習,增強學生的自我評價意識。
教材通過創設“釘制平行四邊形框架”這一情境,便于學生發現和探索平行四邊形的常用判別方法。如有條件可要求學生自己準備,由學生自我操作。也可由教師演示。
教學重點:平行四邊形的判別方法。
教學難點:利用平行四邊形的判別方法進行正確的說理。
初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現象描述和說理的過渡時期。因此,對這部分內容的學習,要引導學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質定理。
一、創設情境,引入新課
師:請同學們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學生活動:學生按小組進行探索。
初二數學教案篇三
教學目標:
1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。
2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。
3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數據的算術平均數。
教學重點:
體會平均數、中位數、眾數在具體情境中的意義和應用。
教學難點:
對于平均數、中位數、眾數在不同情境中的應用。
教學方法:
歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數、中位數、眾數的概念及舉例。
一般地對于n個數x1……xn把(x1+x2+…xn)叫做這n個數的.算術平均數,簡稱平均數。
如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。
中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。
眾數就是一組數據中出現次數最多的那個數據。
如3,2,3,5,3,4中3是眾數。
2、平均數、中位數和眾數的特征:
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。
3、算術平均數和加權平均數有什么區別和聯系:
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4、利用計算器求一組數據的平均數。
利用科學計算器求平均數的方法計算平均數。
二、例題講解:
三、課堂練習:
復習題a組
四、小結:
1、掌握平均數、中位數與眾數的概念及計算。
2、理解算術平均數與加權平均數的聯系與區別。
五、作業:
復習題b組、c組(選做)
初二數學教案篇四
1.了解分式的基本性質,掌握分式的約分和通分法則。掌握分式的四則運算。
2.會用待定系數法求反比例函數的解析式,能利用函數性質分析和解決一些簡單的實際問題。
3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關性質和常用判定方法,并運用這些知識進行有關的證明和計算。
5.進一步理解平均數、中位數和眾數等統計量的統計意義,會計算極差和方差,理解它們的統計意義,會用它們表示數據的波動情況。
過程與方法
進一步培養學生的合情推理能力和發展學生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數的變化與對應的思想;養成用數據說話的習慣和實事求是的科學態度;培養學生的探究能力、數學歸納能力,在活動中培養學生的合作交流能力;逐步形成獨立思考,主動探索的習慣。
情感、態度與價值觀
豐富學生從事數學活動的經驗和體驗,通過對問題的共同探討,培養學生的協作精神,通過對知識方法的總結,培養反思的習慣,和理性思維。培養學生面對教學活動中的困難,能通過合作交流解決遇到的困難。
初二數學教案篇五
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標系(2)
教學目標
知識與技能
1.在給定的直角坐標系下,會根據坐標描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。
過程與方法
2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。
情感態度與價值觀
通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。
教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學過程
第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)
在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。
練習:指出下列 各點以及所在象限或坐標軸:
a(-1,-2.5),b(3,-4),c( ,5),d(3,6),e (-2.3,0),f(0, ), g(0,0) (抽取學生作答)
由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。
第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學生操作完畢后)
2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
(出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標系畫,要求每位同學獨立完成。
(學生描點、畫圖)
(拿出一位做對的學生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環節 感悟與收獲(5分鐘,學生總結,全班交流)
本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。
在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。
第五環節 布置作業
習題5、4
a組(優等生)1、2、3
b組(中等生)1、2
c組(后三分之一生)1、2
初二數學教案篇六
教學內容和地位:
眾數、中位數是描述一組數據的集中趨勢的兩個統計特征量,是幫助學生學會用數據說話的基本概念。本節課的教學內容和現實生活密切相關,是培養學生應用數學意識和創新能力的最好素材。
教學重點和難點:
本節課的重點是眾數和中位數兩概念的形成過程及兩概念的運用。本節課的難點是對統計數據從多角度進行全面地分析。因為利用數據進行分析,對剛剛接觸統計的學生來說,他們原有的認知結構中缺乏這方面的知識經驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。
教學目標分析:
認知目標:
(1)使學生認知眾數、中位數的意義;
(2)會求一組數據的眾數、中位數。
能力目標:
(1)讓學生接觸并解決一些社會生活中的問題,為學生創新學數學、用數學的情境,培養學生的數學應用意識和創新意識。
(2)在問題解決的過程中,培養學生的自主學習能力;
(3)在問題分析的過程中,培養學生的團結協作精神。
情感目標:
(2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。
教學輔助:網絡教室、多媒體輔助網絡教學課件、bbs電子公告欄、學習資源庫
教法與學法:
根據本節課的教學內容,主要采用了討論發現法。即課堂上,教師(或學生)提出適當的問題,通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的過程中發現概念的產生過程,體現“數學教學是數學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現他們的主體地位,而教師是通過對學生參與學習的啟發、調整、激勵來體現自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結合”、“學思結合”、“學用結合”的學法指導,這對學生的主體意識的培養和創新能力的培養都有積極的意義。
初二數學教案篇七
(1)知識結構
(2)重點、難點分析
本節內容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.
本節內容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點.
2、 教法建議
本節課教學模式主要采用“學生主體性學習”的教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納. 教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:
(1)參與探索發現,領略知識形成過程
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
(2)采用“類比”的學習方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系.
(3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養學生發現問題、提出問題的創造性能力.
初二數學教案篇八
1、本節課首先從最簡單的正比例函數入手、從正比例函數的定義、函數關系式、引入次函數的概念。
2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習初、高中其它函數和高中解析幾何中的直線方程的基礎。
1、雖然這是一節全新的數學概念課,學生沒有接觸過。但是,孩子們已經具備了函數的一些知識,如正比例函數的概念及性質,這些都為學習本節內容做好了鋪墊。
2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習其它函數的基礎。
3、學生認知障礙點:根據問題信息寫出一次函數的表達式。
1、理解一次函數與正比例函數的概念以及它們的關系,在探索過程中,發展抽象思維及概括能力,體驗特殊和一般的辯證關系。
2、能根據問題信息寫出一次函數的表達式。能利用一次函數解決簡單的實際問題。
3、經歷利用一次函數解決實際問題的過程,逐步形成利用函數觀點認識現實世界的意識和能力。
1、一次函數、正比例函數的概念及關系。
2、會根據已知信息寫出一次函數的表達式。
初二數學教案篇九
(一)、知識與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
(二)、過程與方法:
(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。
(三)、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。
二、教學重點和難點
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。
三、教學過程
教學環節:
活動1:復習引入
看誰算得快:用簡便方法計算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
設計意圖:
如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階.
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題
p165的探究(略);
2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?
設計意圖:
引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根據上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯系與區別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
初二數學教案篇十
1、了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。
算術平方根的概念。
根據算術平方根的概念正確求出非負數的算術平方根。
這就要用到平方根的概念,也就是本章的主要學習內容。這節課我們先學習有關算術平方根的概念。
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數x的值。
一般地,如果一個正數x的平方等于a,即 =a,那么這個正數x叫做a的算術平方根。a的算術平方根記為 ,讀作根號a,a叫做被開方數。規定:0的算術平方根是0.
也就是,在等式 =a (x0)中,規定x = 。
2、 試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來。
3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值。例如 表示25的算術平方根。
4、例1 求下列各數的算術平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習 1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?
建議學生觀察圖形感受 的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究。
1、這節課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數的算術平方根
p75習題13.1活動第1、2、3題